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Abstract

Gas chromatography and pattern recognition methods were used to develop a potential method for differentiating European honeybees from
Africanized honeybees. The test data consisted of 237 gas chromatograms of hydrocarbon extracts obtained from the wax glands, cuticle, and
exocrine glands of European and Africanized honeybees. Each gas chromatogram contained 65 peaks corresponding to a set of standardize
retention time windows. A genetic algorithm (GA) for pattern recognition was used to identify features in the gas chromatograms characteristic
of the genotype. The pattern recognition GA searched for features in the chromatograms that optimized the separation of the European and
Africanized honeybees in a plot of the two or three largest principal components of the data. Because the largest principal components capture
the bulk of the variance in the data, the peaks identified by the pattern recognition GA primarily contained information about differences
between gas chromatograms of European and Africanized honeybees. The principal component analysis routine embedded in the fitness
function of the pattern recognition GA acted as an information filter, significantly reducing the size of the search space since it restricted
the search to feature sets whose principal component plots showed clustering on the basis of the bees’ genotype. In addition, the algorithm
focused on those classes and/or samples that were difficult to classify as it trained using a form of boosting. Samples that consistently classify
correctly are not as heavily weighted as samples that are difficult to classify. Over time, the algorithm learns its optimal parameters in a manner
similar to a neural network. The pattern recognition GA integrates aspects of artificial intelligence and evolutionary computations to yield a
“smart” one-pass procedure for feature selection and classification.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction honeybees in supplanting the European honeybee population
has been attributed to a variety of biological and behavior
Africanized honeybees are descendants of African beesfactors and is one of the most successful introgressions ever
imported into Brazil by scientists attempting to breed a hon- documented.
eybee better adapted to the South American tropics. The Africanized honeybees have received considerable atten-
variety of honeybee that resulted from the interbreeding of the tion in the popular press. Many stories have stressed the
established European bee with the newly imported African aggressive behavior of this bee and the inherent danger that
types, referred to as the Africanized bee, has since dominatedAfricanized bees pose for both man and domestic animals.
the bee fauna of much of South and Central America. In 1990, In addition, Africanized honeybees also have the potential
the Africanized honeybee appeared outside the small southto alter agricultural practices and significantly increase the
Texas town of Hildaggl]. In the past 14 years, Africanized  cost of bee-pollinated food products. Honeybees account for
honeybees have spread to southern California, Arizona, New80% of all insect pollination activity in the United States.
Mexico, Nevada, and Oklahoma. The success of Africanized They pollinate more than 100 different agricultural products
including many fruits and vegetables, forage plants, which
* Corresponding author. Tel.: +1 405 744 5945; fax: +1 405 744 6007.  are important in production of meat and dairy products, and
E-mail address: bklab@chem.okstate.edu (B.K. Lavine). oil seed crops. The United States Department of Agriculture
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estimates that 20 billion dollars worth of agricultural prod- those classes and/or samples that were difficult to classify as
ucts are dependent on the European honeybee for pollinationt trained using a form of boosting. Samples that consistently
[2]. If Africanized honeybees appear in the United States in classify correctly are not as heavily weighted as samples that
the same form in which they dispersed throughout Brazil, are difficult to classify. Over time, the algorithm learns its
they could have deleterious effects on all aspects of the USoptimal parameters in a manner similar to a neural network.
agricultural economy influenced by bee pollination.

To control the spread of Africanized bees in the United
States, it will be necessary to develop a program of stock cer-2. Experimental
tification. This program can only be implemented if a reliable
and easy to use method for the identification of Africanized 2.1. Bee specimens
honeybees is developed. Currently, the method used by the
United States Department of Agriculture for Africanized Hydrocarbon extracts were obtained from 294 adult
honeybee identification is morphometric analyj@k This worker bees. Of the 294 foragers, 128 were Africanized hon-
procedure employs a linear discriminant developed from eybees and the other 166 were European. The Africanized
approximately 20 body measurements to identify individual honeybees were collected from colonies in Costa Rica, Peru,
bee specimens as Africanized or European. However, Ecuador, Peru, Honduras, and Mexico. Many of the colonies
morphometric analysis cannot determine if a given bee were designated as moderately or heavily Africanized by
population is in the initial stages of becoming Africanized, workers at these sites based on a field test for colony defense
which is of great interest to Federal and State regulatory behavior. European honeybees were collected from managed
officials. Although a polymerase chain reaction based assaycolonies maintained in the United States. They represented a
has recently been developgd], more selective primers variety of commercially available US stocks.
are needed to ensure accurate genotyping when using this

method. 2.2. Sample preparation
Our previous work using packed column gas chro-
matography and the linear learning machjigto analyze Hydrocarbons were extracted from the wax gland, cuticle,

cuticular hydrocarbons of insects has shown that bees whichand exocrine gland of individual whole bee specimens by first
are fully Africanized can be differentiated from European soaking individual specimens in pesticide grade hexane for
honeybees on the basis of their hydrocarbon profdesie 72 h. The hydrocarbons were isolated from the soak by means
have also shown that it is possible to identify the African of a silica gel syringe column (silica Sep-Pac, Millipore)
genotype in F1 hybridf7]. Using gas chromatography and using pesticide grade hexane as the eluent. The hydrocarbon
the linear learning machine, we have also demonstrated thafraction was collected and concentrated to dryness under a
heavily Africanized (i.e., bees that are fully Africanized) stream of nitrogen. It was reconstituted with @f hexane
and moderately Africanized honeybees (bees that are notprior to analysis by capillary column gas chromatography or
yet fully Africanized but possess many of the African traits) gas chromatography—mass spectrometery (GC-MS).
can be differentiated from European honeybees based on
differences in their hydrocarbon profilgg. 2.3. Gas chromatographic analysis

In the present study, hydrocarbon extracts obtained
from the wax glands, cuticle, and exocrine glands of 238  Hydrocarbon extracts obtained from individual whole
European and Africanized honeybees were analyzed bybees were analyzed on a 25-m 5% phenyl methyl silicone
capillary column gas chromatography. A genetic algorithm fused silica capillary column (Hewlett-Packard Ultra 2,
(GA) for pattern recognitiorj9-11] was used to identify  i.d.=0.32mm), which was temperature programmed from
features in the gas chromatograms characteristic of the50to200°C at 7/min and then from 200 to 25 at 1°/min.
African genotype. The pattern recognition GA searched for The gas chromatographic experiments were performed on
features in the chromatograms that optimized the separationa HP5890A instrument equipped with a flame ionization
of the European and Africanized honeybees in a plot of the detector. GC-MS analysis was also performed in this study
two or three largest principal componeifit®] of the data. using a Finnigan OWA 1020 automated GC-MS. The
Because the largest principal components capture the bulkpresence of normal and branched chain alkanes, alkenes, and
of the variance in the data, the peaks identified by the patterndienes was revealed in the extract. GC peaks corresponding
recognition GA primarily contained information about to the n-alkanes were used as retention standards in the
differences between European and Africanized honeybeescapillary column gas chromatographic experiments. Kovat
The principal component analysis routine embedded in retention indices were assigned to the compounds eluting
the fitness function of the pattern recognition GA acted as from the column and these indices (as well as data from the
an information filter, significantly reducing the size of the GC-MS experiment) were used for peak identification. A
search space since it restricted the search to feature setsypical gas chromatographic trace of the hydrocarbon extract
whose principal component plots showed clustering on the from an Africanized honeybee is shownhig. 1L Each gas
basis of genotype. In addition, the algorithm focused on chromatogram contained 65 peaks corresponding to a set
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Fig. 1. Gas chromatographic trace of the hydrocarbon extracts obtained from the wax gland, cuticle, and exocrine gland of a heavily Africagizad forag
normal alkanes; B: alkenes; C: dienes; and D: branched chain alkanes. Reprinted with kind permission from Lay8je et al.

of standardized retention time windows. The 65 gas chro- is that points representing chromatograms from honeybees

matographic peaks selected for pattern recognition analysispossessing the African genotype should cluster in a limited

were at least moderately resolved and computer integrationregion of this space separate from the points corresponding

of these peaks always yielded reliable results. These peakgo the European honeybees.

were also readily identifiable in all the chromatograms by A genetic algorithm for pattern recognition was used to

visual analysis so peak matching was not a problem. select features from the training set data characteristic of
the bees’ genotype. A block diagram of the pattern recog-
nition GA is shown inFig. 2 During each generation, a

3. Pattern recognition analysis population of binary strings of fixed length is generated,
each of which represents a potential solution to the African-

For pattern recognition analysis, the gas chromatographicized/European honeybee classification problem. For a GC
data was divided into a training set (consisting of 130 Euro- Peak to be included, it is necessary for the corresponding bit
pean honeybees and 108 hea\/”y and moderate|y Africanizedin the String to be setat 1. If the bitis set to 0, the Correspond-
honeybeeS, seBable j) and a prediction set (Consisting of Ing GC peak isnotincluded. The Strings are decoded yleldlng
56 European and Africanized honeybees of which the honey-the subset of the 65 GC peaks sent to the fitness function for
bees from San Diego, Tampa, Berkeley and Mexico were not €valuation. Each string is assigned a value by the fitness func-
correctly classified by morphometric analysis, Sable 2. tion, which is a measure of the degree of separation between
Each gas chromatogram was initially represented as a datdhe European and Africanized honeybees in a principal com-
vectorX = (x1, x2, X3, . . . Xj, . . . Xg5) Wherex; is the area of the ponent plot of the data defined by the extracted feature subset.
jth peak. Such a vector can also be considered as a point infhe fitness (i.e., the quality of the proposed feature subset
ann-dimensional Euclidean space. A set of chromatograms for bee classification) is used to select potential solutions for
is therefore represented as a set of points in-dimensional ~ recombination, which produces a new population of strings.
Euclidean space. (In this study,is equal to 65.) A basic ~ The power of the GA arises from recombinatifi8,14]
assumption is that distances between points in this space are

inversely related to their degree of similarity. The expectation Table 2
Prediction set

Table 1 Specimen type Number of honeybees
Training set San Diego (European) 7
- Tampa (European) 22
Specimen type Number of honeybees Berkeley (European) 7
European foragers from United States 130 Mexico (Africanized) 6
Heavily Africanized foragers 64 French Guinea (Africanized) 7
Moderately Africanized foragers 44 Peru (Africanized) 7

Total 238 Total 56
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Fig. 2. Block diagram of the pattern recognition GA. Reprinted with kind permission from B.K. Lavine, A.J. Moores, H.T. Mayfield, A. Faruque, IFuel spil
identification using gas chromatography/genetic algorithms-pattern recognition techniques, Analytical Letters 31 (1998) 2805.

which causes a structured yet randomized exchange of infor-K-nearest neighbors with the same class label as the sam-
mation between strings (i.e., potential solutions), with the ple point in question, the so-called sample hit count (SHC),
expectation that good solutions can generate even better oness computed (0 SHC(s) <K.). Using Eq.(3), it is a simple

In addition, some of the binary strings may undergo mutation, matter to score each principal component plot, i.e., determine
where one of the bits is randomly changed. (If a bitis zero or the degree of separation between classes in the plot.

the feature is excluded, the mutation operator applied to the

string in question causes the bit to change to one and forces itsp(4) = Z Z iSHC(g) SW(s) ©)
inclusion in the feature subset or vice versa.) This allows the — = K.

GAto search adjacent regions of the solution space mitigating . .

local convergence. The aforementioned processes: evalua- 10 Petter understand the scoring of the principal compo-
tion, selection, crossover, reproduction, and adjustment of Nent plots, consider a data set with two classes, which have

internal parameters (which is discussed below), are repeate®en @ssigned equal weights. Class 1 (e.g., Africanized hon-
until a specified number of generations is achieved or a fea-€YP€€s) has 20 samples, and class 2 (e.g., European bees)

sible solution is found. The operators comprising our pattern NS 50 samples. At generation 0, all samples in a given class
recognition GA are described below. (European or Africanized) will have the same weight. Thus,

each sample (honeybee) in class 1 has a sample weight of 2.5,
whereas each sample (honeybee) in class 2 has a weight of 1.
Suppose a sample (honeybee) from class 1 has as its 20 near-
The pattern recognition GA emulates human pattem estneighbors, 14 Africanized honeybees and 6 European hon-
eybees. Hence, SHE£ 0.7, and (SHG() x SW=0.7x 2.5,

recognltlont tr;r?ug_lp rtnaclrgmedlearnm&m score tlhe p”nc'paltwhich equals 1.75. By summing (SHK) x SW foreach bee
componentpiots. 1o trackand score the principalcomponen sample, the principal component plot can be scored.
plots, class and sample weights, which are an integral part of

the fitness function, are computed (see Effsand (2) dur- o
ing each generation. Class weights sum to 100; the sample’-2- Adjusting internal parameters

weights for samples of a particular class sum to a value equal .
to the corresponding weight of the class. The GA is able to focus on samples and classes that are

difficult to classify by boosting their weights over successive
generations. In order to boost the weights, it is necessary to

3.1. Evaluation

CW(c)

CW(e) = 10 >-.CW(c) @ first compute the sample hit rate, SHR{vhich is the mean
value of SHCK, over all feature subsets in a particular gen-
SW,(s) = CW(C)LC(S) 2) eration. SHRY) is a measure of the difficulty of classifying a
> secSWe(s) particular sample. If a sample (e.g., honeybee) is difficult to

classify, it has a low sample hit rate since it has a low SEC/
Kalue in most feature subsets of the population. If a sample
(e.g., honeybee) is easy to classify, it has a high sample hit
rate since it has a high SHK,/ value in most feature subsets
eof the population.

The principal component plot generated for each chromo-
some after the subset of features in the chromosome has bee
extracted is scored with thié-nearest neighbok¢-NN) clas-
sification algorithm[15]. For a given data point, Euclidean
distances are computed between it and every other pointin th

principal component plot. These distances are arranged from ®
smallestto largest, and a poll is taken of the poiRtsearest  SHR() = 1 Z SHG(s) (4)
neighbors. For the most rigorous classificati&n(which is ¢ = K

a user defined parameter) equals the number of samples in
the class to which the sample point belongs. The number of CHRg(c) = AVG(SHR(s) : Viec) ®)
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Next, the class-hit rate (see H§)), which is the average  also assure a significant degree of diversity in the population,
sample hit rate for all of the samples in a class, is computed. since the crossover points and reordering of exchanged string
Class and sample weights are then adjusted using a perceptrofragments of each chromosome pair is selected at random.
(see Eqgs(6) and (7). Classes with a low class hit rate and
samples with a low sample hit rate are weighted more heavily
than classes or samples that score well. The user must se4. Results and discussion
the momentum, P. The value of P should be high enough to
facilitate learning while ensuring that a particular sample or ~ The first step in this study was to apply principal com-
class does not dominate the calculation, which would result ponent analysis to the data. Principal component analysis
in other samples and/or classes not contributing to the fitnesg[16,17] is the most widely used multivariate analysis
function. For this reasom®,is usually setat 0.5. Aftera certain  technique in science and engineering. It is a method for
number of generations, the class weights will not change. transforming the original measurement variables into new,
Eq. (6) is then turned off and the GA focuses exclusively uncorrelated variables called principal components. Each
on the troublesome samples via E@). P is then halved.  principal component is a linear combination of the original
During each generation, class and sample weights are update¢heasurement variables. Using this method is analogous
(i.e., boosted) using the class and sample hit-rates from theto finding a new coordinate system better at conveying
previous generationg(+ 1 is the current generation, whereas information present in the data than axes defined by the
g is the previous generation.) Boosting of sample and classoriginal measurement variables. This new coordinate system
weights is crucial because it modifies the fitness landscape,is linked to variation in the data. The basis vectors of this
as the population evolves towards a better solution, therebynew coordinate system are the principal components. Often,
ensuring that convergence to a local optimum does not occur.only the two or three largest principal components are

necessary to explain all of the information present in a
CWg1(s) = CWe(s) + P(1 — CHRg(s)) (6) data set if the data contains a large number of interrelated

measurement variables. Using principal component analysis,
SWe+1(s) = SWe(s) + P(1 — SHRy(s)) Q) dimensionality reduction, classification of samples, and
identification of outliers in high dimensional data is possible.
3.3. Selection Fig. 3shows a plot of the two largest principal components

of the 238 European and Africanized honeybee specimens

Selection, crossover, and mutation operators are appliedthat comprise the training set. Each bee is represented
to the chromosomes to develop new and potentially betteras a point in the principal component plot: 1 represents
solutions. The selection operator is implemented by ordering European honeybees, and 2 represents moderately and
the population of strings, i.e., the potential solutions, from heavily Africanized honeybees. The overlap between the
best to worst by their fithess while simultaneously generating
a copy of the same population and randomizing the order of
the strings in this copy with respect to their fitness. A fraction 2D PC Plot Dim(31)
of the population is then selected as per the selection pres-  °[
sure, which is usually set at 0.5. The top half of the ordered at gy, 0
population is mated with strings from the top half of the ran- P A Ak
dom population, guaranteeing the best 50% are selected for 2| Py e -“.{I;.ﬁ”
reproduction, while every string in the randomized copy has I £ ,f_f ;g?zg A a1 e a
a uniform chance of being selected due to the randomized 282 %ngz%(%&" 2
selection criterion imposed on the strings from this popula- & -2f ¢ 2 2 ¢ .
tion. This selection process strikes a balance between genetic™ | o2l
diversity and elitism with the data dictating the juxtaposition 0% 2, ®
of these two opposing behaviors. -6 % o

For each pair of strings selected for mating, two new il e
strings are generated using two-point crossover. The result- g,
ing population of strings, both parents and children, are  -1ot e
sorted by their fitness and the t@p strings are retained 5 J . . J . . J
for the next generation. (Our previous studies have shown -8 -6 -4 -2 0 2 4 6 8
that inclusion of both parents and children as opposed to PC1
only children in the next generation improves algorithm
performance.) The new population should perform better on Fig. 3. Plot of the two largest principal components of the 65 GC peaks and

th it d b th lecti iteri 238 European and Africanized honeybee gas chromatograms that comprise
average than Its predecessor because the selection crl erlorﬁetraining set. Each bee is represented as a point in the principal component

Us_ed for reproduction exhibits .bias for the hig-her—ranking plot: 1 represents European honeybees, and 2 represents moderately and
strings. However, the aforementioned reproduction operatorsheavily Africanized honeybees.
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Fig. 4. Plot of the two largest principal components developed from the four Fig. 5. Projection of the honeybees from the prediction set onto the principal
GC peaks identified by the pattern recognition GA. Each bee is representedcomponent plot defined by the 238 training set samples and the four features
as apointinthe principal component plot: 1 represents European honeybeesidentified by the pattern recognition GA. Each gas chromatogram from the
and 2 represents moderately and heavily Africanized honeybees. Clusteringtraining set is represented by a number: 1: European honeybees, 2: heav-
of the honeybees by genotype is evident. ily Africanized honeybees, and 3: moderately Africanized honeybees. Each
chromatogram from the prediction set is represented by a letter: T: Tampa,
M: Mexico, B: Berkeley, S: San Diego, F: French Guinea, and P: Peru. The

gas chromatograms of European and Africanized honeybee™ ™ - _ e o
; . . two circled prediction set samples are incorrectly classified in the principal
in the plot is evident. component map developed from the training set data.

The pattern recognition GA was used in this study to iden-
tify key features that are characteristic of the hydrocarbon
profile of each class. Features were identified by sampling that had the same class label. The classification success rate
key feature subsets, scoring their principal component plots, for this study was 100%. Furthermore, the same four features
and tracking classes and/or samples, which were most diffi- identified in the run involving the entire training set were also
cult to classify. The boosting routine used this information to identified as key features in the cross validation study.
steer the population to an optimal solution. After 100 genera- A set of 56 gas chromatograms (s&&ble 2 was used
tions, the pattern recognition GA identified four peaks (B11, to assess the predictive ability of the four peaks identified
B14, B15, and B22) whose principal component plot showed by the pattern recognition GA. The prediction set samples
clustering on the basis of genotype ($ég. 4). These four  were projected onto the principal component map developed
peaks correspond to the following alkenes: 9-C29:1, 6-C29:1, from the 238 gas chromatograms and 4 gas chromatographic
10-C31:1, and 10-C35:1. peaksFig. 5shows the projection of the prediction set sam-

The ability of the GC data to predict the class of an ples onto a principal component map defined by the four
unknown sample was first tested using a procedure knownpeaks selected by the pattern recognition GA. Fifty-four of
as internal (cross) validation. The original training set of 238 the 56 projected samples lie in a region of the map occupied
gas chromatograms (samples) was divided into 8 training by bees possessing the same class label. One honeybee from
set/validation set pairs. Each pair consisted of 208 train- Mexico was classified as European and one Tampa bee was
ing set samples and 30 validation set samples. Each trainingclassified as Africanized.
set/validation set pair was generated by random selection. A We consider these results to be significant since mor-
particular bee specimen was present in at least one of the hometric analysis could not correctly classify any of the
validation sets. Features that correctly classified the bees werdioneybees from San Diego, Tampa, Berkeley, or Mexico in
identified using the training set and were then tested on thethe prediction set. Evidently, the pattern recognition GA can
corresponding validation set. The validation set samples wereidentify features in the gas chromatograms characteristic of
classified by computing their coordinates for a new coordi- genotype. This suggests that concentration patterns of high
nate system based on the two largest principal componentsmolecular weight hydrocarbons convey taxonomic informa-
developed from the 208 training set samples and the infor- tion about honeybees. Using gas chromatography and pattern
mative GC peaks identified by the pattern recognition GA. recognition methods, an entomologist can correctly identify
Both the training set and prediction set samples were thenthe subspecies of a bee specimen by simply measuring the
mapped onto the space defined by this new coordinate sys-concentration of only a few hydrocarbons. This approach to
tem. Validation set samples were correctly classified if they taxonomy places species identification on a firm chemical
were projected into clusters containing training set samplesbasis.
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