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Identification of Africanized honeybees
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Abstract

Gas chromatography and pattern recognition methods were used to develop a potential method for differentiating European honeybees from
Africanized honeybees. The test data consisted of 237 gas chromatograms of hydrocarbon extracts obtained from the wax glands, cuticle, and
exocrine glands of European and Africanized honeybees. Each gas chromatogram contained 65 peaks corresponding to a set of standardized
retention time windows. A genetic algorithm (GA) for pattern recognition was used to identify features in the gas chromatograms characteristic
of the genotype. The pattern recognition GA searched for features in the chromatograms that optimized the separation of the European and
Africanized honeybees in a plot of the two or three largest principal components of the data. Because the largest principal components capture
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he bulk of the variance in the data, the peaks identified by the pattern recognition GA primarily contained information about d
etween gas chromatograms of European and Africanized honeybees. The principal component analysis routine embedded i

unction of the pattern recognition GA acted as an information filter, significantly reducing the size of the search space since it
he search to feature sets whose principal component plots showed clustering on the basis of the bees’ genotype. In addition, th
ocused on those classes and/or samples that were difficult to classify as it trained using a form of boosting. Samples that consiste
orrectly are not as heavily weighted as samples that are difficult to classify. Over time, the algorithm learns its optimal parameters i
imilar to a neural network. The pattern recognition GA integrates aspects of artificial intelligence and evolutionary computations
smart” one-pass procedure for feature selection and classification.
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. Introduction

Africanized honeybees are descendants of African bees
mported into Brazil by scientists attempting to breed a hon-
ybee better adapted to the South American tropics. The
ariety of honeybee that resulted from the interbreeding of the
stablished European bee with the newly imported African

ypes, referred to as the Africanized bee, has since dominated
he bee fauna of much of South and Central America. In 1990,
he Africanized honeybee appeared outside the small south
exas town of Hildago[1]. In the past 14 years, Africanized
oneybees have spread to southern California, Arizona, New
exico, Nevada, and Oklahoma. The success of Africanized
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honeybees in supplanting the European honeybee popu
has been attributed to a variety of biological and beha
factors and is one of the most successful introgressions
documented.

Africanized honeybees have received considerable a
tion in the popular press. Many stories have stresse
aggressive behavior of this bee and the inherent dange
Africanized bees pose for both man and domestic anim
In addition, Africanized honeybees also have the pote
to alter agricultural practices and significantly increase
cost of bee-pollinated food products. Honeybees accou
80% of all insect pollination activity in the United Stat
They pollinate more than 100 different agricultural produ
including many fruits and vegetables, forage plants, w
are important in production of meat and dairy products,
oil seed crops. The United States Department of Agricu
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estimates that 20 billion dollars worth of agricultural prod-
ucts are dependent on the European honeybee for pollination
[2]. If Africanized honeybees appear in the United States in
the same form in which they dispersed throughout Brazil,
they could have deleterious effects on all aspects of the US
agricultural economy influenced by bee pollination.

To control the spread of Africanized bees in the United
States, it will be necessary to develop a program of stock cer-
tification. This program can only be implemented if a reliable
and easy to use method for the identification of Africanized
honeybees is developed. Currently, the method used by the
United States Department of Agriculture for Africanized
honeybee identification is morphometric analysis[3]. This
procedure employs a linear discriminant developed from
approximately 20 body measurements to identify individual
bee specimens as Africanized or European. However,
morphometric analysis cannot determine if a given bee
population is in the initial stages of becoming Africanized,
which is of great interest to Federal and State regulatory
officials. Although a polymerase chain reaction based assay
has recently been developed[4], more selective primers
are needed to ensure accurate genotyping when using this
method.

Our previous work using packed column gas chro-
matography and the linear learning machine[5] to analyze
cuticular hydrocarbons of insects has shown that bees which
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those classes and/or samples that were difficult to classify as
it trained using a form of boosting. Samples that consistently
classify correctly are not as heavily weighted as samples that
are difficult to classify. Over time, the algorithm learns its
optimal parameters in a manner similar to a neural network.

2. Experimental

2.1. Bee specimens

Hydrocarbon extracts were obtained from 294 adult
worker bees. Of the 294 foragers, 128 were Africanized hon-
eybees and the other 166 were European. The Africanized
honeybees were collected from colonies in Costa Rica, Peru,
Ecuador, Peru, Honduras, and Mexico. Many of the colonies
were designated as moderately or heavily Africanized by
workers at these sites based on a field test for colony defense
behavior. European honeybees were collected from managed
colonies maintained in the United States. They represented a
variety of commercially available US stocks.

2.2. Sample preparation

Hydrocarbons were extracted from the wax gland, cuticle,
and exocrine gland of individual whole bee specimens by first
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re fully Africanized can be differentiated from Europ
oneybees on the basis of their hydrocarbon profiles[6]. We
ave also shown that it is possible to identify the Afri
enotype in F1 hybrids[7]. Using gas chromatography a

he linear learning machine, we have also demonstrate
eavily Africanized (i.e., bees that are fully Africanize
nd moderately Africanized honeybees (bees that ar
et fully Africanized but possess many of the African tra
an be differentiated from European honeybees base
ifferences in their hydrocarbon profiles[8].

In the present study, hydrocarbon extracts obta
rom the wax glands, cuticle, and exocrine glands of
uropean and Africanized honeybees were analyze
apillary column gas chromatography. A genetic algori
GA) for pattern recognition[9–11] was used to identif
eatures in the gas chromatograms characteristic o
frican genotype. The pattern recognition GA searched

eatures in the chromatograms that optimized the sepa
f the European and Africanized honeybees in a plot o

wo or three largest principal components[12] of the data
ecause the largest principal components capture the
f the variance in the data, the peaks identified by the pa
ecognition GA primarily contained information abo
ifferences between European and Africanized honey
he principal component analysis routine embedde

he fitness function of the pattern recognition GA acte
n information filter, significantly reducing the size of
earch space since it restricted the search to feature
hose principal component plots showed clustering on
asis of genotype. In addition, the algorithm focused
oaking individual specimens in pesticide grade hexan
2 h. The hydrocarbons were isolated from the soak by m
f a silica gel syringe column (silica Sep-Pac, Millipo
sing pesticide grade hexane as the eluent. The hydroc

raction was collected and concentrated to dryness un
tream of nitrogen. It was reconstituted with 50�l of hexane
rior to analysis by capillary column gas chromatograph
as chromatography–mass spectrometery (GC–MS).

.3. Gas chromatographic analysis

Hydrocarbon extracts obtained from individual wh
ees were analyzed on a 25-m 5% phenyl methyl sili

used silica capillary column (Hewlett-Packard Ultra
.d. = 0.32 mm), which was temperature programmed f
0 to 200◦C at 7◦/min and then from 200 to 250◦ C at 1◦/min.
he gas chromatographic experiments were performe
HP5890A instrument equipped with a flame ioniza

etector. GC–MS analysis was also performed in this s
sing a Finnigan OWA 1020 automated GC–MS.
resence of normal and branched chain alkanes, alkene
ienes was revealed in the extract. GC peaks correspo

o the n-alkanes were used as retention standards in
apillary column gas chromatographic experiments. K
etention indices were assigned to the compounds el
rom the column and these indices (as well as data from
C–MS experiment) were used for peak identification

ypical gas chromatographic trace of the hydrocarbon ex
rom an Africanized honeybee is shown inFig. 1. Each ga
hromatogram contained 65 peaks corresponding to
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Fig. 1. Gas chromatographic trace of the hydrocarbon extracts obtained from the wax gland, cuticle, and exocrine gland of a heavily Africanized forager. A:
normal alkanes; B: alkenes; C: dienes; and D: branched chain alkanes. Reprinted with kind permission from Lavine et al.[8].

of standardized retention time windows. The 65 gas chro-
matographic peaks selected for pattern recognition analysis
were at least moderately resolved and computer integration
of these peaks always yielded reliable results. These peaks
were also readily identifiable in all the chromatograms by
visual analysis so peak matching was not a problem.

3. Pattern recognition analysis

For pattern recognition analysis, the gas chromatographic
data was divided into a training set (consisting of 130 Euro-
pean honeybees and 108 heavily and moderately Africanized
honeybees, seeTable 1) and a prediction set (consisting of
56 European and Africanized honeybees of which the honey-
bees from San Diego, Tampa, Berkeley and Mexico were not
correctly classified by morphometric analysis, seeTable 2).
Each gas chromatogram was initially represented as a data
vectorX = (x1, x2, x3, . . . xj, . . . x65) wherexj is the area of the
jth peak. Such a vector can also be considered as a point in
ann-dimensional Euclidean space. A set of chromatograms
is therefore represented as a set of points in ann-dimensional
Euclidean space. (In this study,n is equal to 65.) A basic
assumption is that distances between points in this space are
inversely related to their degree of similarity. The expectation
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is that points representing chromatograms from honeybees
possessing the African genotype should cluster in a limited
region of this space separate from the points corresponding
to the European honeybees.

A genetic algorithm for pattern recognition was used to
select features from the training set data characteristic of
the bees’ genotype. A block diagram of the pattern recog-
nition GA is shown inFig. 2. During each generation, a
population of binary strings of fixed length is generated,
each of which represents a potential solution to the African-
ized/European honeybee classification problem. For a GC
peak to be included, it is necessary for the corresponding bit
in the string to be set at 1. If the bit is set to 0, the correspond-
ing GC peak is not included. The strings are decoded yielding
the subset of the 65 GC peaks sent to the fitness function for
evaluation. Each string is assigned a value by the fitness func-
tion, which is a measure of the degree of separation between
the European and Africanized honeybees in a principal com-
ponent plot of the data defined by the extracted feature subset.
The fitness (i.e., the quality of the proposed feature subset
for bee classification) is used to select potential solutions for
recombination, which produces a new population of strings.
The power of the GA arises from recombination[13,14],

Table 2
Prediction set

S es

S
T
B
M
F
P

T

able 1
raining set

pecimen type Number of honeybe

uropean foragers from United States 130
eavily Africanized foragers 64
oderately Africanized foragers 44

otal 238
pecimen type Number of honeybe

an Diego (European) 7
ampa (European) 22
erkeley (European) 7
exico (Africanized) 6
rench Guinea (Africanized) 7
eru (Africanized) 7

otal 56
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Fig. 2. Block diagram of the pattern recognition GA. Reprinted with kind permission from B.K. Lavine, A.J. Moores, H.T. Mayfield, A. Faruque, Fuel spill
identification using gas chromatography/genetic algorithms-pattern recognition techniques, Analytical Letters 31 (1998) 2805.

which causes a structured yet randomized exchange of infor-
mation between strings (i.e., potential solutions), with the
expectation that good solutions can generate even better ones.
In addition, some of the binary strings may undergo mutation,
where one of the bits is randomly changed. (If a bit is zero or
the feature is excluded, the mutation operator applied to the
string in question causes the bit to change to one and forces its
inclusion in the feature subset or vice versa.) This allows the
GA to search adjacent regions of the solution space mitigating
local convergence. The aforementioned processes: evalua-
tion, selection, crossover, reproduction, and adjustment of
internal parameters (which is discussed below), are repeated
until a specified number of generations is achieved or a fea-
sible solution is found. The operators comprising our pattern
recognition GA are described below.

3.1. Evaluation

The pattern recognition GA emulates human pattern
recognition through machine learning to score the principal
component plots. To track and score the principal component
plots, class and sample weights, which are an integral part of
the fitness function, are computed (see Eqs.(1) and (2)) dur-
ing each generation. Class weights sum to 100; the sample
weights for samples of a particular class sum to a value equal
t
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K-nearest neighbors with the same class label as the sam-
ple point in question, the so-called sample hit count (SHC),
is computed (0 <SHC(s) <Kc). Using Eq.(3), it is a simple
matter to score each principal component plot, i.e., determine
the degree of separation between classes in the plot.

F (d) =
∑

c

∑

s ∈ c

1

Kc

SHC(s) SW(s) (3)

To better understand the scoring of the principal compo-
nent plots, consider a data set with two classes, which have
been assigned equal weights. Class 1 (e.g., Africanized hon-
eybees) has 20 samples, and class 2 (e.g., European bees)
has 50 samples. At generation 0, all samples in a given class
(European or Africanized) will have the same weight. Thus,
each sample (honeybee) in class 1 has a sample weight of 2.5,
whereas each sample (honeybee) in class 2 has a weight of 1.
Suppose a sample (honeybee) from class 1 has as its 20 near-
est neighbors, 14 Africanized honeybees and 6 European hon-
eybees. Hence, SHC/K = 0.7, and (SHC/K) × SW = 0.7× 2.5,
which equals 1.75. By summing (SHC/Kc) × SW for each bee
sample, the principal component plot can be scored.

3.2. Adjusting internal parameters

The GA is able to focus on samples and classes that are
d sive
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W(c) = 100
CW(c)∑
cCW(c)

(1)

Wc(s) = CW(c)
SWc(s)∑
s ∈ cSWc(s)

(2)

The principal component plot generated for each chro
ome after the subset of features in the chromosome ha
xtracted is scored with theK-nearest neighbor (K-NN) clas-
ification algorithm[15]. For a given data point, Euclide
istances are computed between it and every other point
rincipal component plot. These distances are arranged
mallest to largest, and a poll is taken of the point’sK-neares
eighbors. For the most rigorous classification,K (which is
user defined parameter) equals the number of samp

he class to which the sample point belongs. The numb
ifficult to classify by boosting their weights over succes
enerations. In order to boost the weights, it is necessa
rst compute the sample hit rate, SHR(s), which is the mea
alue of SHC/Kc over all feature subsets in a particular g
ration. SHR(s) is a measure of the difficulty of classifying
articular sample. If a sample (e.g., honeybee) is difficu
lassify, it has a low sample hit rate since it has a low SHCKc

alue in most feature subsets of the population. If a sa
e.g., honeybee) is easy to classify, it has a high samp
ate since it has a high SHC/Kc value in most feature subse
f the population.

HR(s) = 1

φ

φ∑

i=1

SHCi(s)

K
(4)

HRg(c) = AVG(SHRg(s) : ∀s ∈ c) (5)
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Next, the class-hit rate (see Eq.(5)), which is the average
sample hit rate for all of the samples in a class, is computed.
Class and sample weights are then adjusted using a perceptron
(see Eqs.(6) and (7)). Classes with a low class hit rate and
samples with a low sample hit rate are weighted more heavily
than classes or samples that score well. The user must set
the momentum, P. The value of P should be high enough to
facilitate learning while ensuring that a particular sample or
class does not dominate the calculation, which would result
in other samples and/or classes not contributing to the fitness
function. For this reason,P is usually set at 0.5. After a certain
number of generations, the class weights will not change.
Eq. (6) is then turned off and the GA focuses exclusively
on the troublesome samples via Eq.(7). P is then halved.
During each generation, class and sample weights are updated
(i.e., boosted) using the class and sample hit-rates from the
previous generation. (g + 1 is the current generation, whereas
g is the previous generation.) Boosting of sample and class
weights is crucial because it modifies the fitness landscape,
as the population evolves towards a better solution, thereby
ensuring that convergence to a local optimum does not occur.

CWg+1(s) = CWg(s) + P(1 − CHRg(s)) (6)

SWg+1(s) = SWg(s) + P(1 − SHRg(s)) (7)
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also assure a significant degree of diversity in the population,
since the crossover points and reordering of exchanged string
fragments of each chromosome pair is selected at random.

4. Results and discussion

The first step in this study was to apply principal com-
ponent analysis to the data. Principal component analysis
[16,17] is the most widely used multivariate analysis
technique in science and engineering. It is a method for
transforming the original measurement variables into new,
uncorrelated variables called principal components. Each
principal component is a linear combination of the original
measurement variables. Using this method is analogous
to finding a new coordinate system better at conveying
information present in the data than axes defined by the
original measurement variables. This new coordinate system
is linked to variation in the data. The basis vectors of this
new coordinate system are the principal components. Often,
only the two or three largest principal components are
necessary to explain all of the information present in a
data set if the data contains a large number of interrelated
measurement variables. Using principal component analysis,
dimensionality reduction, classification of samples, and
identification of outliers in high dimensional data is possible.
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.3. Selection

Selection, crossover, and mutation operators are ap
o the chromosomes to develop new and potentially b
olutions. The selection operator is implemented by orde
he population of strings, i.e., the potential solutions, f
est to worst by their fitness while simultaneously genera
copy of the same population and randomizing the ord

he strings in this copy with respect to their fitness. A frac
f the population is then selected as per the selection
ure, which is usually set at 0.5. The top half of the ord
opulation is mated with strings from the top half of the r
om population, guaranteeing the best 50% are selecte
eproduction, while every string in the randomized copy

uniform chance of being selected due to the random
election criterion imposed on the strings from this pop
ion. This selection process strikes a balance between g
iversity and elitism with the data dictating the juxtaposi
f these two opposing behaviors.

For each pair of strings selected for mating, two n
trings are generated using two-point crossover. The re
ng population of strings, both parents and children,
orted by their fitness and the topφ strings are retaine
or the next generation. (Our previous studies have sh
hat inclusion of both parents and children as oppose
nly children in the next generation improves algorit
erformance.) The new population should perform bette
verage than its predecessor because the selection cr
sed for reproduction exhibits bias for the higher-rank
trings. However, the aforementioned reproduction oper
Fig. 3shows a plot of the two largest principal compone
f the 238 European and Africanized honeybee specim

hat comprise the training set. Each bee is represe
s a point in the principal component plot: 1 repres
uropean honeybees, and 2 represents moderatel
eavily Africanized honeybees. The overlap between

ig. 3. Plot of the two largest principal components of the 65 GC peak
38 European and Africanized honeybee gas chromatograms that co

he training set. Each bee is represented as a point in the principal com
lot: 1 represents European honeybees, and 2 represents moderat
eavily Africanized honeybees.
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Fig. 4. Plot of the two largest principal components developed from the four
GC peaks identified by the pattern recognition GA. Each bee is represented
as a point in the principal component plot: 1 represents European honeybees,
and 2 represents moderately and heavily Africanized honeybees. Clustering
of the honeybees by genotype is evident.

gas chromatograms of European and Africanized honeybee
in the plot is evident.

The pattern recognition GA was used in this study to iden-
tify key features that are characteristic of the hydrocarbon
profile of each class. Features were identified by sampling
key feature subsets, scoring their principal component plots,
and tracking classes and/or samples, which were most diffi-
cult to classify. The boosting routine used this information to
steer the population to an optimal solution. After 100 genera-
tions, the pattern recognition GA identified four peaks (B11,
B14, B15, and B22) whose principal component plot showed
clustering on the basis of genotype (seeFig. 4). These four
peaks correspond to the following alkenes: 9-C29:1, 6-C29:1,
10-C31:1, and 10-C35:1.

The ability of the GC data to predict the class of an
unknown sample was first tested using a procedure known
as internal (cross) validation. The original training set of 238
gas chromatograms (samples) was divided into 8 training
set/validation set pairs. Each pair consisted of 208 train-
ing set samples and 30 validation set samples. Each training
set/validation set pair was generated by random selection. A
particular bee specimen was present in at least one of the 8
validation sets. Features that correctly classified the bees were
identified using the training set and were then tested on the
corresponding validation set. The validation set samples were
classified by computing their coordinates for a new coordi-
n nents
d nfor-
m GA.
B then
m sys-
t they
w ples

Fig. 5. Projection of the honeybees from the prediction set onto the principal
component plot defined by the 238 training set samples and the four features
identified by the pattern recognition GA. Each gas chromatogram from the
training set is represented by a number: 1: European honeybees, 2: heav-
ily Africanized honeybees, and 3: moderately Africanized honeybees. Each
chromatogram from the prediction set is represented by a letter: T: Tampa,
M: Mexico, B: Berkeley, S: San Diego, F: French Guinea, and P: Peru. The
two circled prediction set samples are incorrectly classified in the principal
component map developed from the training set data.

that had the same class label. The classification success rate
for this study was 100%. Furthermore, the same four features
identified in the run involving the entire training set were also
identified as key features in the cross validation study.

A set of 56 gas chromatograms (seeTable 2) was used
to assess the predictive ability of the four peaks identified
by the pattern recognition GA. The prediction set samples
were projected onto the principal component map developed
from the 238 gas chromatograms and 4 gas chromatographic
peaks.Fig. 5shows the projection of the prediction set sam-
ples onto a principal component map defined by the four
peaks selected by the pattern recognition GA. Fifty-four of
the 56 projected samples lie in a region of the map occupied
by bees possessing the same class label. One honeybee from
Mexico was classified as European and one Tampa bee was
classified as Africanized.

We consider these results to be significant since mor-
phometric analysis could not correctly classify any of the
honeybees from San Diego, Tampa, Berkeley, or Mexico in
the prediction set. Evidently, the pattern recognition GA can
identify features in the gas chromatograms characteristic of
genotype. This suggests that concentration patterns of high
molecular weight hydrocarbons convey taxonomic informa-
tion about honeybees. Using gas chromatography and pattern
recognition methods, an entomologist can correctly identify
the subspecies of a bee specimen by simply measuring the
c h to
t ical
b

ate system based on the two largest principal compo
eveloped from the 208 training set samples and the i
ative GC peaks identified by the pattern recognition
oth the training set and prediction set samples were
apped onto the space defined by this new coordinate

em. Validation set samples were correctly classified if
ere projected into clusters containing training set sam
oncentration of only a few hydrocarbons. This approac
axonomy places species identification on a firm chem
asis.
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